Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.368
Filtrar
1.
Int J Biol Macromol ; : 131843, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663701

RESUMO

Highly oxidative reactive oxygen species (ROS) attack protein structure and regulate its functional properties. The molecular structures and functional characteristics of egg white (EW) protein (EWP) during 28 d of aerobic or anaerobic storage were explored to investigate the "self-driven" oxidation mechanism of liquid EW mediated by endogenous ROS signaling. Results revealed a significant increase in turbidity during the storage process, accompanied by protein crosslinking aggregation. The ROS yield initially increased and then decreased, leading to a substantial increase in carbonyl groups and tyrosine content. The free sulfhydryl groups and molecular flexibility in EWP exhibited synchronicity with ROS production, reflecting the self-repairing ability of cysteine residues in EWP. Fourier-transform infrared spectroscopy indicated stable crosslinking between EWP molecules in the early oxidation stage. However, continuous ROS attacks accelerated EWP degradation. Compared with the control group, the aerobic-stimulated EWP showed a significant decrease in foaming capacity from 30.5 % to 9.6 %, whereas the anaerobic-stimulated EWP maintained normal levels. The emulsification performance exhibited an increasing-then-decreasing trend. In conclusion, ROS acted as the predominant factor causing deterioration of liquid EW, triggering moderate oxidation that enhanced the superior foaming and emulsifying properties of EWP, and excessive oxidation diminished the functional characteristics by affecting the molecular structure.

2.
World J Gastrointest Oncol ; 16(4): 1296-1308, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660646

RESUMO

BACKGROUND: Preoperative knowledge of mutational status of gastrointestinal stromal tumors (GISTs) is essential to guide the individualized precision therapy. AIM: To develop a combined model that integrates clinical and contrast-enhanced computed tomography (CE-CT) features to predict gastric GISTs with specific genetic mutations, namely KIT exon 11 mutations or KIT exon 11 codons 557-558 deletions. METHODS: A total of 231 GIST patients with definitive genetic phenotypes were divided into a training dataset and a validation dataset in a 7:3 ratio. The models were constructed using selected clinical features, conventional CT features, and radiomics features extracted from abdominal CE-CT images. Three models were developed: ModelCT sign, modelCT sign + rad, and model CTsign + rad + clinic. The diagnostic performance of these models was evaluated using receiver operating characteristic (ROC) curve analysis and the Delong test. RESULTS: The ROC analyses revealed that in the training cohort, the area under the curve (AUC) values for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic for predicting KIT exon 11 mutation were 0.743, 0.818, and 0.915, respectively. In the validation cohort, the AUC values for the same models were 0.670, 0.781, and 0.811, respectively. For predicting KIT exon 11 codons 557-558 deletions, the AUC values in the training cohort were 0.667, 0.842, and 0.720 for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic, respectively. In the validation cohort, the AUC values for the same models were 0.610, 0.782, and 0.795, respectively. Based on the decision curve analysis, it was determined that the modelCT sign + rad + clinic had clinical significance and utility. CONCLUSION: Our findings demonstrate that the combined modelCT sign + rad + clinic effectively distinguishes GISTs with KIT exon 11 mutation and KIT exon 11 codons 557-558 deletions. This combined model has the potential to be valuable in assessing the genotype of GISTs.

3.
Sci Rep ; 14(1): 9167, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649770

RESUMO

Syndecan-binding protein (SDCBP) was reported to stimulate the advancement of esophageal squamous cell carcinoma (ESCC) and could potentially be a target for ESCC treatment. There is a growing corpus of research on the anti-tumor effects of iron chelators; however, very few studies have addressed the involvement of dexrazoxane in cancer. In this study, structure-based virtual screening was employed to select drugs targeting SDCBP from the Food and Drug Administration (FDA)-approved drug databases. The sepharose 4B beads pull-down assay revealed that dexrazoxane targeted SDCBP by interacting with its PDZ1 domain. Additionally, dexrazoxane inhibited ESCC cell proliferation and anchorage-independent colony formation via SDCBP. ESCC cell apoptosis and G2 phase arrest were induced as measured by the flow cytometry assay. Subsequent research revealed that dexrazoxane attenuated the binding ability between SDCBP and EGFR in an immunoprecipitation assay. Furthermore, dexrazoxane impaired EGFR membrane localization and inactivated the EGFR/PI3K/Akt pathway. In vivo, xenograft mouse experiments indicated that dexrazoxane suppressed ESCC tumor growth. These data indicate that dexrazoxane might be established as a potential anti-cancer agent in ESCC by targeting SDCBP.


Assuntos
Proliferação de Células , Receptores ErbB , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Sinteninas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores ErbB/metabolismo , Animais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinteninas/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia
4.
Clin Transl Med ; 14(4): e1644, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572667

RESUMO

RNA methylation is widespread in nature. Abnormal expression of proteins associated with RNA methylation is strongly associated with a number of human diseases including cancer. Increasing evidence suggests that targeting RNA methylation holds promise for cancer treatment. This review specifically describes several common RNA modifications, such as the relatively well-studied N6-methyladenosine, as well as 5-methylcytosine and pseudouridine (Ψ). The regulatory factors involved in these modifications and their roles in RNA are also comprehensively discussed. We summarise the diverse regulatory functions of these modifications across different types of RNAs. Furthermore, we elucidate the structural characteristics of these modifications along with the development of specific inhibitors targeting them. Additionally, recent advancements in small molecule inhibitors targeting RNA modifications are presented to underscore their immense potential and clinical significance in enhancing therapeutic efficacy against cancer. KEY POINTS: In this paper, several important types of RNA modifications and their related regulatory factors are systematically summarised. Several regulatory factors related to RNA modification types were associated with cancer progression, and their relationships with cancer cell migration, invasion, drug resistance and immune environment were summarised. In this paper, the inhibitors targeting different regulators that have been proposed in recent studies are summarised in detail, which is of great significance for the development of RNA modification regulators and cancer treatment in the future.


Assuntos
Neoplasias , 60697 , Humanos , 5-Metilcitosina , Adenosina , Movimento Celular , RNA/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Nat Commun ; 15(1): 2827, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565528

RESUMO

Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ecossistema , Fósforo , Metagenoma/genética , Solo
6.
Sci Rep ; 14(1): 7960, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575651

RESUMO

Respiratory sensitivity and pneumonia are possible outcomes of the coronavirus (COVID-19). Surface characteristics like temperature and sunshine affect how long the virus survives. This research article analyzes COVID-19 mathematical model behavior based on symptomatic and non-symptomatic individuals. In the reproductive model, the best result indicates the intensity of the epidemic. Our model remained stable at a certain point under controlled conditions after we evaluated a specific element. This approach is in place of traditional approaches such as Euler's and Runge-Kutta's. An unusual numerical approach known as the non-standard finite difference (NSFD) scheme is used in this article. This numerical approach gives us positivity. A dependable numerical analysis allowed us to evaluate different approaches and verify our theoretical results. Unlike the widely used Euler and RK4 approaches, we investigated the benefits of implementing NSFD schemes. By numerically simulating COVID-19 in a variety of scenarios, we demonstrated how our theoretical concepts work. The simulation findings support the usefulness of both approaches.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Modelos Teóricos , Simulação por Computador
7.
Crit Rev Anal Chem ; : 1-37, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635407

RESUMO

Glucose concentration is a crucial parameter for assessing human health. Over recent years, non-enzymatic electrochemical glucose sensors have drawn considerable attention due to their substantial progress. This review explores the common mechanism behind the transition metal-based electrocatalytic oxidation of glucose molecules through classical electrocatalytic frameworks like the Pletcher model and the Hydrous Oxide-Adatom Mediator model (IHOAM), as well as the redox reactions at the transition metal centers. It further compiles the electrochemical characterization techniques, associated formulas, and their ensuing conclusions pertinent to transition metal-based non-enzymatic electrochemical glucose sensors. Subsequently, the review covers the latest advancements in the field of transition metal-based active materials and support materials used in non-enzymatic electrochemical glucose sensors in the last decade (2014-2023). Additionally, it presents a comprehensive classification of representative studies according to the active metal catalysts components involved.

8.
Toxicol Sci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636493

RESUMO

Cigarette smoke changes the genomic and epigenomic imprint of cells. In this study, we investigated the biological consequences of extended cigarette smoke exposure on dental pulp stem cells (DPSCs) and the potential roles of miRNAs. DPSCs were treated with various doses of cigarette smoke condensate (CSC) for up to six weeks. Cell proliferation, survival, migration, and differentiation were evaluated. Cytokine and miRNA expression were profiled. The results showed that extended exposure to CSC significantly impaired the regenerative capacity of the DPSCs. Bioinformatic analysis showed that the cell cycle pathway, cancer pathways (small cell lung cancer, pancreatic, colorectal, and prostate cancer), and pathways for TNF, TGF-ß, p53, PI3K-Akt, mTOR and ErbB signal transduction, were associated with altered miRNA profiles. In particular, three miRNAs has-miR-26a-5p, has-miR-26b-5p and has-miR-29b-3p fine tune the p53 and cell cycle signaling pathways to regulate DPSC cellular activities. The work indicated that miRNAs are promising targets to modulate stem cell regeneration and understanding miRNA-targeted genes and their associated pathways in smoking individuals have significant implications for disease control and prevention.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38643450

RESUMO

Latuda® is a novel antipsychotic drug for schizophrenia and bipolar depression. A bioequivalence trial was performed to investigate the bioequivalence of Latuda® and its generic drug lurasidone. Two independent trials were carried out, each involving 28 subjects. In the fasting trial, subjects were randomly assigned to two groups (1:1 ratio), receiving either 40 mg of generic lurasidone or Latuda®. After a 7-day washout period, subjects entered the second period with a crossover administration of 40 mg of generic lurasidone or Latuda®. The postprandial study design was similar to that of the fasting study. In the fasting study, the pharmacokinetic (PK) parameter values of generic lurasidone and Latuda® were as follows: the Cmax was 28.84 ± 19.34 ng/ml and 28.22 ± 21.19 ng/ml, respectively; the AUC0-t was 121.39 ± 58.47 h*ng/ml and 118.35 ± 52.24 h*ng/ml, respectively; and the AUC0-∞ was 129.63 ± 63.26 h*ng/ml and 126.59 ± 57.99 h*ng/ml, respectively. The primary pharmacokinetic parameter, Cmax, was assessed for equivalence using reference-scaled average bioequivalence (RSABE), while other parameters (AUC0-t, AUC0-∞) were evaluated using average bioequivalence (ABE). The results indicate that both Cmax and AUC meet the equivalence criteria. In the postprandial study, the PK values of generic lurasidone and Latuda® were as follows: the Cmax was 74.89 ± 32.06 ng/ml and 83.51 ± 33.52 ng/ml, respectively; the AUC0-t was 274.77 ± 103.05 h*ng/ml and 289.26 ± 95.25 h*ng/ml, respectively; and the AUC0-∞ was 302.44 ± 121.60 h*ng/ml and 316.32 ± 109.04 h*ng/ml, respectively. The primary pharmacokinetic parameters (Cmax, AUC0-t, AUC0-∞) were assessed for equivalence using ABE, and both met the equivalence criteria. In the study, lurasidone and Latuda® both exhibited acceptable safety and tolerability. The results displayed that lurasidone and Latuda® were bioequivalent and safe in healthy Chinese participants. Clinical Trial Registry: This trial is registered at chinadrugtrials.org.cn (no.: CTR20191717, date: 2019.08.29).

10.
Andrology ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465706

RESUMO

BACKGROUND: Carriers of reciprocal translocations often have more unbalanced spermatozoa and higher DNA fragmentation rates, elevating reproductive risk. The simple swim-up method (SSUM) can decrease the amount of spermatozoa with abnormal chromatin structure and fragmented DNA, however, it has limited efficacy in eliminating chromosomally unbalanced sperm. METHODS: The spermatozoa of eight Robertsonian translocation (Rob) carriers were split into three groups: original raw semen group (control group); SSUM and swimming trapper method group (STM) processed semen samples. After different semen preparation procedures, semen qualities, sperm chromosomal aneuploidy, and sperm fragmented DNA were evaluated. RESULTS: Although spermatozoa with higher motility was obtained by both SSUM and STM, the population of faster forward moving sperm was greater with STM as compared to SSUM. While the rates of DNA fragmentation were statistically much lower in both groups than ejaculated semen sample, our data showed better effect on the decrease of DNA fragmentation index (DFI) after selection by STM for patients who have high DFI (>20%) in neat semen. For all patients, significant decrease in the frequency of chromosomally unbalanced spermatozoa was observed after selection using STM. Although similar trends can be seen in the SSUM group, a significant difference was identified in one patient only. CONCLUSIONS: Use of swimming trapper (STM) is superior for enriching high-motile and genetically competent sperm in comparison with SSUM.

11.
J Integr Neurosci ; 23(3): 61, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538223

RESUMO

BACKGROUND: Tanshinone IIA (TSIIA) is an element of the effective ingredients of Salvia miltiorrhiza Bunge (Labiatae), exhibits a significant therapeutic effect in brain neuroprotection. The focus of this study was the examination of synaptic plasticity of in Mg2+-free-induced epileptic hippocampus neurons and how TSIIA protects against it. METHODS: The purity of the primary hippocampal neurons extracted from Sprague Dawley rats was assessed within 24 hours by microtubule-associated protein (MAP2) immunofluorescence staining. A hippocampal neuron model for Mg2+-free-induced spontaneous recurrent epileptiform discharge was developed, five experimental groups were then randomized: blank (Blank), model (Model), TSIIA (TSIIA, 20 µM), LY294002 (LY294002, 25 µM), and TSIIA+LY294002 (TSIIA+LY294002, 20 µM+25 µM). FIJI software was used to examine variations of neurite complexity, total length of hippocampal neurons, number of primary dendrites and density of dendritic spines. Developmental regulation brain protein (Drebrin) and brain-derived neurotrophic factor (BDNF) expression was evaluated using immunofluorescence staining and the relative expression of phospho-protein kinase B (p-Akt)/Akt, BDNF, synaptophysin (SYN) and postsynaptic density 95 (PSD-95) determined by Western blot. RESULTS: In contrast to the model group, TSIIA drastically reduced damage to synaptic plasticity of hippocampal neurons caused by epilepsy (p < 0.05). The TSIIA group showed a significant increase in the relative expression of PSD-95, SYN, BDNF, and p-Akt/Akt (p < 0.01). CONCLUSIONS: TSIIA was effective in reducing harm to the synaptic plasticity of hippocampal neurons induced by persistent status epilepticus, with the possible mechanism being regulation of the phosphatidylinositol 3-kinase 56 (PI3K)/Akt signaling pathway.


Assuntos
Abietanos , Epilepsia , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Abietanos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
12.
Diagn Microbiol Infect Dis ; 109(2): 116240, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547799

RESUMO

Occult HBV infection (OBI) remains a potential threat for blood safety. The prevalence of OBI was investigated in a blood donation center of Chinese PLA General Hospital to improve HBV blood safety. 229446 samples from blood donors were screened by two different enzyme-linked immunosorbent assay (ELISA) kits. 78 samples were HBV DNA positive among 212134 ELISA nonreactive donor samples. The prevalence of OBI was 0.04% (76/212134). Ten samples of OBI were permitted by the donors' content for further research, and all of these were below 200IU/mL, and six of these were below 20IU/mL(6/10,60%). Genotype B and genotype C was 20% (2/10) and 80% (8/10), respectively. 16 amino acid mutations were detected in the S region of OBI, included three mutations in MHR region of S. The prevalence of OBI is rare in this donation center. These mutations we found may contribute to the multifactorial occurrence of OBI.

14.
J Environ Manage ; 355: 120493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452624

RESUMO

The present study aimed to narrow such gaps by applying nonlinear differential equations to biostability in drinking water. Biostability results from the integrated dynamics of nutrients and disinfectants. The linear dynamics of biostability have been well studied, while there remain knowledge gaps concerning nonlinear effects. The nonlinear effects are explained by phase plots for specific scenarios in a drinking water system, including continuous nutrient release, flush exchange with the adjacent environment, periodic pulse disinfection, and periodic biofilm development. The main conclusions are, (1) The correlations between the microbial community and nutrients go through phases of linear, nonlinear, and chaotic dynamics. Disinfection breaks the chaotic phase and returns the system to the linear phase, increasing the microbial growth potential. (2) Post-disinfection after multiple microbial peaks produced via metabolism can increase disinfection efficiency and decrease the risks associated with disinfectant byproduct risks. This can provide guidelines for optimizing the disinfection strategy, according to the long-term water safety target or a short management. Limited disinfection and ultimate disinfection may be more effective and have low chemical risk, facing longer stagnant conditions. (3) Periodic biofilm formation and biofilm detachment increase the possibility of uncertainty in the chaotic phase. For future study, nonlinear differential equation models can accordingly be applied at the molecular and ecological levels to further explore more nonlinear regulation mechanisms.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Cloro/química , Cloro/farmacologia , Desinfecção/métodos , Biofilmes , Purificação da Água/métodos
15.
Protein Sci ; 33(4): e4924, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501590

RESUMO

Targeted delivery of small-molecule drugs via covalent attachments to monoclonal antibodies has proved successful in clinic. For this purpose, full-length antibodies are mainly used as drug-carrying vehicles. Despite their flexible conjugation sites and versatile biological activities, intact immunoglobulins with conjugated drugs, which feature relatively large molecular weights, tend to have restricted tissue distribution and penetration and low fractions of payloads. Linking small-molecule therapeutics to other formats of antibody may lead to conjugates with optimal properties. Here, we designed and synthesized ADP-ribosyl cyclase-enabled fragment antigen-binding (Fab) drug conjugates (ARC-FDCs) by utilizing CD38 catalytic activity. Through rapidly forming a stable covalent bond with a nicotinamide adenine dinucleotide (NAD+ )-based drug linker at its active site, CD38 genetically fused with Fab mediates robust site-specific drug conjugations via enzymatic reactions. Generated ARC-FDCs with defined drug-to-Fab ratios display potent and antigen-dependent cytotoxicity against breast cancer cells. This work demonstrates a new strategy for developing site-specific FDCs. It may be applicable to different antibody scaffolds for therapeutic conjugations, leading to novel targeted agents.


Assuntos
Antígenos CD , NAD+ Nucleosidase , ADP-Ribosil Ciclase , ADP-Ribosil Ciclase 1 , Antígenos CD/química , NAD+ Nucleosidase/química , Preparações Farmacêuticas , NAD/química
16.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339316

RESUMO

For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics. Based on collective experience from the consortium groups, we provide insight regarding PDMCs established both in vitro and in vivo, with a focus on practical matters related to developing and maintaining key cancer models through a series of vignettes. Although every model has the potential to offer valuable insights, the choice of the right model should be guided by the research question. However, recognizing the inherent constraints in each model is crucial. Our objective here is to delineate the strengths and limitations of each model as established by individual vignettes. Further advances in PDMCs and the development of novel model systems will enable us to better understand human biology and improve the study of human pathology in the lab.

17.
J Biol Chem ; 300(4): 106793, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38403250

RESUMO

RNA 5-methylcytosine (m5C) is an abundant chemical modification in mammalian RNAs and plays crucial roles in regulating vital physiological and pathological processes, especially in cancer. However, the dysregulation of m5C and its underlying mechanisms in non-small cell lung cancer (NSCLC) remain unclear. Here we identified that NSUN2, a key RNA m5C methyltransferase, is highly expressed in NSCLC tumor tissue. We found elevated NSUN2 expression levels strongly correlate with tumor grade and size, predicting poor outcomes for NSCLC patients. Furthermore, RNA-seq and subsequent confirmation studies revealed the antioxidant-promoting transcription factor NRF2 is a target of NSUN2, and depleting NSUN2 decreases the expression of NRF2 and increases the sensitivity of NSCLC cells to ferroptosis activators both in vitro and in vivo. Intriguingly, the methylated-RIP-qPCR assay results indicated that NRF2 mRNA has a higher m5C level when NSUN2 is overexpressed in NSCLC cells but shows no significant changes in the NSUN2 methyltransferase-deficient group. Mechanistically, we confirmed that NSUN2 upregulates the expression of NRF2 by enhancing the stability of NRF2 mRNA through the m5C modification within its 5'UTR region recognized by the specific m5C reader protein YBX1, rather than influencing its translation. In subsequent rescue experiments, we show knocking down NRF2 diminished the proliferation, migration, and ferroptosis tolerance mediated by NSUN2 overexpression. In conclusion, our study unveils a novel regulatory mechanism in which NSUN2 sustains NRF2 expression through an m5C-YBX1-axis, suggesting that targeting NSUN2 and its regulated ferroptosis pathway might offer promising therapeutic strategies for NSCLC patients.

18.
Eur J Pharmacol ; 969: 176452, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417609

RESUMO

Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.


Assuntos
Flavonoides , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Apoptose , Proliferação de Células , Autofagia , Neoplasias/tratamento farmacológico
19.
Sci Data ; 11(1): 218, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368451

RESUMO

As an important forestry pest, Coronaproctus castanopsis (Monophlebidae) has caused serious damage to the globally valuable Gutianshan ecosystem, China. In this study, we assembled the first chromosome-level genome of the female specimen of C. castanopsis by merging BGI reads, HiFi long reads and Hi-C data. The assembled genome size is 700.81 Mb, with a scaffold N50 size of 273.84 Mb and a contig N50 size of 12.37 Mb. Hi-C scaffolding assigned 98.32% (689.03 Mb) of C. Castanopsis genome to three chromosomes. The BUSCO analysis (n = 1,367) showed a completeness of 91.2%, comprising 89.2% of single-copy BUSCOs and 2.0% of multicopy BUSCOs. The mapping ratio of BGI, second-generation RNA, third-generation RNA and HiFi reads are 97.84%, 96.15%, 97.96%, and 99.33%, respectively. We also identified 64.97% (455.3 Mb) repetitive elements, 1,373 non-coding RNAs and 10,542 protein-coding genes. This study assembled a high-quality genome of C. castanopsis, which accumulated valuable molecular data for scale insects.


Assuntos
Agricultura Florestal , Genoma de Inseto , Hemípteros , Feminino , Cromossomos , Ecossistema , Filogenia , RNA , Hemípteros/genética
20.
Dalton Trans ; 53(11): 5192-5201, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38381164

RESUMO

Smart chromic materials reacting to physicochemical stimuli are widely applied in optical switches, smart windows, and chemical sensors. Currently, most materials only respond to a single stimulus, but those that respond to multiple external stimuli are still in the minority. Herein, we report a novel porous zinc tungstate@metaloxoviologen framework [Zn3(Bcbpy)6(H2O)2]-[ZnW12O40]·6H2O (ZnW12@MV, H2BcbpyCl2 = 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridinium dichloride), which shows multiple stimulus-responsive properties due to a combination of different functional motifs, namely, viologen electron acceptors, luminescent zinc-oxygen-clusters, porous cationic frameworks, and ZnW12O406- electron donors. Generally, the large-sized polyoxometalate (POM) anions serving as structure-directing agents can easily direct the formation of the oligomeric metaloxoviologen cations, mainly because POMs may break down some linkages leaving larger spaces for themselves. The large ZnW12O406- anions in ZnW12@MV are encapsulated into three-dimensional (3D) metaloxoviologen frameworks built up from the linkages of trinuclear zinc-oxygen clusters and Bcbpy viologens, which offer the first example of a 3D metaloxoviologen framework induced by large-sized POM anions. ZnW12@MV shows a reversible chromic response to X-ray/UV and electricity via different stimulus-induced electron transfers between electron-rich POM anions and electron-deficient metaloxoviologen frameworks, whereas the coloration changes are ascribed to the formation of radical and mixed-valence colored state ZnW12O406- species. The photochromic behavior is accompanied by photoluminescence quenching. The discriminative response to different-sized amines is attributed to the formation of viologen radicals through host-guest electron transfer. These results indicate that the multi-stimulus response ZnW12@MV can be applied in electrochromic devices, inkless erasable printing, and the detection of amines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...